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A mixed Heisenberg spin chain with frustrated side chains is investigated by numerical and perturbational
calculations. A frustration-induced quantum partially polarized ferrimagnetic phase and a nonmagnetic spin
quadrupolar phase are found adjacent to the conventional Lieb-Mattis-type ferrimagnetic phase or the non-
magnetic singlet cluster solid phases. The partially polarized ferrimagnetic phase has an incommensurate spin
structure. Similar structures are commonly found in other frustration-induced partially polarized ferrimagnetic
phases. Numerical results also suggest a series of almost critical nonmagnetic ground states in a highly
frustrated regime if the side chain spins weakly couple to the main chain.
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I. INTRODUCTION

The interplay of frustration and quantum fluctuation has
been extensively studied in a variety of low-dimensional
quantum magnets. Even in one-dimensional cases, various
exotic quantum phenomena such as spontaneous
dimerization,1 1/3 plateau with spontaneous trimerization,2

and transition between quantum and classical plateaus3 are
reported. On the other hand, the mixed quantum spin chains
also have a variety of ground states ranging from quantum
ferrimagnetism4 to spin gap phases.5–8

Recently, it has been reported that frustration induces a
partially polarized ferrimagnetic �PPF� phase9–12 in addition
to a conventional Lieb-Mattis-type ferrimagnetic �LMF�
phase. The PPF phase appears when both frustration and
quantum fluctuations are fairly strong. It is an interesting
issue how general such a ferrimagnetism is. Hence it is im-
portant to investigate the features of PPF phases in various
spin systems. We are then motivated to find a PPF phase in
other models and investigate them in detail.

We have introduced a spin chain with side chains in a
previous paper.8 This spin chain has frustration owing to the
interaction among spins in the main chain and those of side
chains. The frustration varies in strength and in feature with
the variation of parameters in the model. Since we focused
on the spin gap phases in Ref. 8, we have investigated the
parameter regimes where frustration is not strong enough to
destroy the spin gap phases. We then found two spin gap
phases and explained them by singlet cluster solid �SCS�
pictures.

In the present work, we examine this model in a highly
frustrated regime. This regime, in which the frustration plays
a central role, is of interest in its own right since the model
exhibits features very different from those in the weak frus-
tration regimes. We actually find clear numerical evidences
not only for the above mentioned fascinating PPF phase but
also for the spin quadrupolar �QP� phase.13–19 These phases
are totally different from the conventional phases such as
spin gap phases and the LMF phase, which can be realized
even in the unfrustrated case. They will be investigated in
detail in the present paper. Also numerical data are obtained,
which suggest the possible existence of an exotic almost

critical nonmagnetic ground state in the regime where the
couplings between the side chain and main chain spins are
weak but strongly frustrated.

The transition from a ferrimagnetic phase to a nonmag-
netic phase in the present model takes place because the
quantum fluctuation in the side chains destroys the ferrimag-
netic long-range order in the main chain. The mechanism of
quantum destruction of ferromagnetism and ferrimagnetism
has been less studied than that of antiferromagnetism; the
latter has been extensively studied in relation with the
high-Tc superconductivity. Recently, however, experiments
have been reported on the nonmagnetic ground states in one-
dimensional and two-dimensional materials20,21 with ferro-
magnetic nearest-neighbor and antiferromagnetic next-
nearest-neighbor couplings. Theoretical investigation has
also been carried out for corresponding models.22–25

In an unfrustrated ferrimagnet, the spontaneous magneti-
zation is uniquely determined by the Lieb-Mattis theorem.26

This type of quantum ferrimagnetism has been investigated
in detail.4 As far as the frustration is weak, the spontaneous
magnetization remains locked to this value.27 This phase is
the LMF phase.10 The spontaneous magnetization in this
phase is a simple fraction of the saturated magnetization. In
contrast, the spontaneous magnetization in the PPF phase
continuously varies with the parameter characterizing the
strength of frustration and is not a simple fraction of the
saturated magnetization. The PPF phase appears between the
LMF phase and the nonmagnetic spin gap phases. This type
of phase is first predicted in the pioneering work of Sachev
and Senthil28 in the quantum rotor model. Bartosch et al.29

proposed a possibility of ferromagnetic Luttinger liquid in an
itinerant one-dimensional Fermi system. The first explicit ex-
ample of quantum PPF phase induced by frustration in one-
dimensional quantum spin systems was proposed by Ivanov
and Richter9 in a frustrated mixed spin ladder. Similar phases
are also found by Yoshikawa and Miyashita10 in a uniform
spin chain and by one of the present authors in a trimerized
zigzag chain.11,12 We propose another example of the PPF
phase in the present mixed spin chain. The present example
is substantially different from previous ones because it is
accompanied by the destruction of the ferrimagnetic order in
the main chain by the frustrated coupling to the quantum
fluctuation in the side chains.
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The QP phase is well known for the spin-1 bilinear-
biquadratic chain between the Haldane and ferromagnetic
phases.13–19 The exact Bethe ansatz solution is available if
the coefficients of the bilinear and the biquadratic terms co-
incide with each other.13–15 Recently, similar phases are
found in the frustrated two-dimensional Heisenberg model
with ferromagnetic nearest-neighbor and antiferromagnetic
next-nearest-neighbor interactions.25 In this paper we explic-
itly show that our model reduces to the bilinear-biquadratic
chain in appropriate limiting cases. It is also argued that the
QP phase should appear in a wide class of complex spin
models between ferrimagnetic and spin gap phases.

This paper is organized as follows: In the next section, the
model Hamiltonian is presented. Various limiting cases are
discussed using the perturbational approximation from the
strong coupling limit in Sec. III. The numerically obtained
ground-state phases are explained in Sec. IV. The properties
of PPF phase are described in detail in Sec. V. Section VI is
devoted to summary and discussion.

II. HAMILTONIAN

We consider the mixed Heisenberg spin chain described
by the Hamiltonian,

H = �
p=1

N/3

�J1S1�p�S2�p� + J2S2�p�S1�p + 1�

+ K1S1�p�T�p� + K2S2�p�T�p�� , �1�

where S2�p� and T�p� are the spin-1/2 operators and S1�p� is
the spin-1 ones in the pth unit cell, as shown in Fig. 1. In
what follows, we use nondimensional parameters j=J2 /J1,
k=K1 /J1, and r=K2 / �2K1�, and the unit of J1=1. The param-
eter r characterizes the strength of frustration. The total num-
ber of spin sites is denoted by N, and then the number of unit
cells is N /3.

In regime 0�r�0.5, where frustration is not strong, we
have found two types of nonmagnetic ground states and have
explained them by SCS pictures.8 When frustration becomes
strong, the phase diagram drastically changes. In the present
paper, we will investigate the strongly frustrated case r�1 in
detail.

III. LIMITING CASES

A. Small j regime

For j=0, the chain is decoupled into an assembly of three-
spin clusters described by the Hamiltonian,

HA�p� = S1�p�S2�p� + kS1�p�T�p� + 2krS2�p�T�p� . �2�

As discussed in Ref. 8, the cluster ground state is a singlet
state with energy,

Es = − k − 1 +
kr

2
, �3�

for k�kc� 2
r −1 and a triplet state with energy,

Et =
− �1 + k + 2kr� − ��1 + k − 4kr�2 + 8�k − 1�2

4
, �4�

for k�kc. Therefore, the ground state of the chain for small
j is a gapped local three-spin singlet phase for k�kc. We call
this phase as Gap I phase following Ref. 8. Because this
cluster ground state is gapped, it cannot gain energy within
the first order in j even in the presence of j.

In the three-spin triplet ground state for k�kc, we define

a composed spin with magnitude 1 as Ŝ�p��S1�p�+S2�p�
+T�p� to describe low-energy phenomena. The total Hamil-
tonian is written as H=H0

A+Hint
A with an unperturbed part

H0
A=�pHA�p� and an interaction part,

Hint
A = �

p=1

N/3

jS2�p�S1�p + 1� . �5�

The perturbation calculation up to the second order in the
interaction part Hint

A yields the following effective bilinear-

biquadratic Hamiltonian for the composed spin Ŝ�p�:

Heff
A = �

p=1

N/3

�Jeff
A Ŝ�p�Ŝ�p + 1� + Deff

A �Ŝ�p�Ŝ�p + 1��2	 , �6�

where the effective interaction parameters consist of the first-
order and second-order perturbation terms as Jeff

A =Jeff
A�1�

+Jeff
A�2� and Deff

A =Deff
A�1�+Deff

A�2�.
In the first-order perturbation, the effective interaction pa-

rameters coming from Jeff
A�1� and Deff

A�1� are

Jeff
A 
 − jX��� , �7�

Deff
A 
 0, �8�

where X��� is given by

X��� =
�

�2�1 + �2�2�1 −
�

2�2
��1 +

�2

2 � , �9�

with

� =
2�2�1 − k�

��k + 1 − 4kr�2 + 8�k − 1�2 − 1 − k + 4kr
. �10�

For small but finite j, the energy of the LMF phase is given
by Et+Jeff

A per unit cell, while the energy of the three-spin
singlet �Gap I� phase is given by Es with no first-order cor-
rection in j. Therefore, comparing the energies of these two
ground states, we find that the phase transition between the
gapped three-spin singlet phase and the LMF phase takes
place at

T(p)

S (p)1 S (p)2

J J2

K1 K2

1

FIG. 1. The quantum spin chain with side chains, which we
study in this paper. S1�p�, S2�p�, and T�p� are spins in the pth unit
cell. These magnitudes are S1=1, S2= 1

2 , and T= 1
2 , respectively.
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k = kTF � kc +
�1 − r��2 − 2r + r2��3 − r�j

2r�2 − r��3 − 4r + 2r2�
. �11�

The effective coupling Jeff
A�1� vanishes for k=1. Therefore, in

the neighborhood of k=1, the higher-order terms come into
play. Within the second-order perturbation with respect to
1−k and j, the effective coupling constants are

Jeff
A 


j2

8�r − 1��1 + 2r�
−

j�1 − k�
2�2r − 1�

, �12�

Deff
A 


j2

8�r − 1��4r2 − 1�
. �13�

The effective model �6� has a variety of phases.19 Within the
present parameter regime, we find the Haldane phase for 0
�Deff

A �Jeff
A —which corresponds to Gap II phase in Ref.

8—the QP phase for 0�Jeff
A �Deff

A , and the LMF phase for
Jeff

A �0. However, in the original Hamiltonian �1�, the LMF
phase is limited by the transition to the three-spin singlet
phase at Jeff

A =Es−Et as discussed above. For Jeff
A �Es−Et, the

ground state is the three-spin singlet �Gap I� phase.
Thus the conditions for each phase in terms of the original

parameters are summarized as follows: The ground-state
phase of the present model is �i� the three-spin singlet �Gap
I� phase for

0 � k � kTF, �14�

�ii� the LMF phase for

kTF � k � kFQ � 1 −
�2r − 1�j

4�r − 1��2r + 1�
, �15�

�iii� the QP phase for

kFQ � k � kQH � 1 −
j

2�2r + 1�
, �16�

and �iv� the Haldane �Gap II� phase for

k � kQH. �17�

These phase boundaries are plotted on the k− j plane in Fig.
2 for r=1.2. It should be remarked that the QP phase in the

present model is realized without biquadratic interaction in
the original Hamiltonian �1�.

B. Large j regime

In the large j limit, S1�p� and S2�p−1� form an effective
S=1 /2 spin ��p��S1�p�+S2�p−1�. The effective Hamil-
tonian is given by

H = �
p=1

N/2

�K1
eff��p�T�p� − JF

eff��p���p + 1�

− KF
eff��p + 1�T�p�� , �18�

which form a �-chain structure depicted in Fig. 3.
The effective interactions are given by

JF
eff =

4

9
, KF

eff =
2kr

3
, K1

eff =
4k

3
, �19�

as argued in Ref. 8. The detailed analysis of this model is
reported in a separate paper.30 Therefore, we only quote the
results and rewrite them in terms of the original model �1�.

The ferromagnetic phase of the model �18� corresponds to
the LMF phase in the original model �1�. This phase is stable
for

0 � k � kFQ =
r − 2

3r
, �20�

even in the limit of large j.
For k�kFQ, the ground state is nonmagnetic. Neverthe-

less, there are still several different phases. For large r, the
model �18� reduces to the S=1 bilinear-biquadratic model
and the QP phase appear for

kFQ � k � kQH �
3r − 4

9r
, �21�

and Haldane phase appear for k�kQH.
The results of the numerical diagonalization calculation

for the model �18� are summarized in Fig. 4. There are the
QP, the Haldane, and the LMF phases, which we discussed
above. In addition, numerical results suggest that there pos-
sibly exist a narrow PPF phase between the LMF phase and
the QP phase, and almost critical nonmagnetic ground states
for small values of k. The PPF phase is so narrow that it
cannot be represented in Fig. 4. We speculate that the almost
critical nonmagnetic phases are spin gap phases with ex-
tremely small energy gap with large scale resonating singlet
cluster solid structure. Corresponding phases are also found
for finite j as described in the next section.

0 0.5 1
0

0.1

0.2

Gap II
(Haldane)

Gap I
(3 spin singlet)

LMF

QP

k

j r=1.2

FIG. 2. Phase diagram for small j with r=1.2.

JF
eff

KF
eff

Keff
: S=1/2

T(p)

σ(p)

AF
Ferro

FIG. 3. � chain realized in the limit j�1.
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C. Large r regime

We examine the case of K2�K1 ,J1 �r ,kr�1� in this sub-
section. In the limit of r ,kr→	, the chain is decoupled into
an assembly of three-spin clusters, each of which described
by the Hamiltonian,

HB�p� = jS1�p + 1�S2�p� + 2krS2�p�T�p� . �22�

The eigenvalues of this three-spin Hamiltonian are given by

E�S = 2� =
kr

2
+

j

2
, �23�

E�S = 1;g� =
− j − 2kr − �16k2r2 − 8krj + 9j2

4
, �24�

E�S = 1;e� =
− j − 2kr + �16k2r2 − 8krj + 9j2

4
, �25�

E�S = 0� =
kr

2
− j . �26�

The ground states are the triplet states with energy E�S
=1;g�. It should be noted that the lowest excitation energy is
of the order of kr even if j is small. Therefore the perturba-
tion calculation from this limit is valid even for small j. As a
result, each cluster has an effective spin-1 degree of freedom

S̃�p��S1�p+1�+S2�p�+T�p�. The total Hamiltonian is writ-
ten as H=H0

B+Hint
B with an unperturbed part H0

B=�pHB�p�
and an interaction part,

Hint
B = �

p=1

N/3

�S2�p� + kT�p��S1�p� . �27�

We can write down the effective Hamiltonian for S̃�p� up to
the second order in Hint

B in the form,

Heff
B = �

p=1

N/3

�Jeff
B S̃�p�S̃�p + 1� + Deff

B �S̃�p�S̃�p + 1��2	 .

�28�

Within the first order in Hint
B , the effective interaction param-

eters are given as

Jeff
B 
 − �X��� + kX�− ��� , �29�

Deff
B 
 0, �30�

where X��� is given by �9� with

� =
j − 4kr + �16k2r2 − 8krj + 9j2

2�2j
. �31�

The effective exchange constant Jeff
B vanishes up to the first

order in Hint
B if j and k satisfy the relation,

j

r
=

8k�k2 − 1�
�3k − 1��3k − 5�

. �32�

We denote the value of k, which satisfies this relation by
kc�j /r� as a function of j /r. The terms of O�r−1� come into
play for k
kc�j /r� and constitute the bilinear-biquadratic
form �28� with Jeff

B 
O�k−kc ,r−1� and Deff
B 
O�r−1�.

We do not explicitly present the second-order expression
for Jeff

B and Deff
B since we numerically carried out the summa-

tion over the intermediate states in the second-order pertur-
bation calculation. The LMF-QP phase boundary kFQ is de-
termined by setting Jeff

B =0. Because the correction terms are
of O�r−1�, deviations �kFQ�kFQ−kc�j /r� and �kQH�kQH
−kc�j /r� scale with 1 /r for fixed j /r. Figure 5 shows the j /r
dependence of r�kFQ and r�kQH. The phase boundaries for
r=10 determined by the present approximation are shown in
Fig. 6.

The calculation in this subsection suggests that the QP
phase found in the small-j limit �A� and that in the large-j
limit �B� form a single phase although it is explicitly dem-
onstrated only in the large r limit.

IV. NUMERICAL GROUND-STATE PHASE DIAGRAM

For small r, there are two types of nonmagnetic ground
states, and the Gaussian transition occurs between them as

0 0.1 0.2 0.3
0

10

20

r

Gap II
(Haldane)

k

LMF

QP

FIG. 4. Phase diagram in large j limit. The shaded region is the
almost critical nonmagnetic phase.

0 5 10

−0.6

−0.4

−0.2

0

j/r

Gap II
(Haldane)

r∆k

QP

LMF

r∆kQH

r∆kFQ

FIG. 5. Phase diagram on the j /r−r�k plane, where �k=k
−kc�j /r�.
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described in Ref. 8. The perturbational approaches in Sec.
III, however, predict the presence of the LMF and the QP
phases in addition to the conventional spin gap phases.

We start with the case of r=2, where the frustration is
fairly strong. The ground-state phase diagram is shown in
Fig. 7. The phase boundaries calculated by using the numeri-
cal diagonalization data for N=18 and 24 are shown. Be-
tween the Haldane-like Gap II and the LMF phases with
spontaneous magnetization M0=Ms /2, there appear a QP
phase—which is identified by the lowest excitation with total
spin-2—16,17 for 0.66�k�1 as expected from the perturba-
tional calculation. For k�0.5, only the data for N=18 are
shown considering the quasitrimerized nature of the QP
phase. In spite of the limited system size, the phase boundary
coincides well with the perturbational results for small j as
depicted by the broken lines. However, the QP phase van-

ishes when k decreases and j increases. Instead, there ap-
pears a PPF phase with the spontaneous magnetization of
intermediate values between Ms /2 and zero. The detailed
properties of this phase is discussed separately in the next
section.

For r�2, the three-spin singlet Gap I phase appears for
0�k�kc. As shown in the phase diagrams—Fig. 8 for r
=1.5, Fig. 9 for r=1.3, and Fig. 10 for r=1.2—both the QP
phase and the PPF phase shrink to regions around k
1 with
the decrease in r. At r=1, the three-spin singlet phase ex-
tends up to k=1 for small j, and both the QP and the PPF
phases vanish.

The phase boundary between the Gap I and the Gap II
phases is determined by the twisted boundary method.31,32 In
Fig. 8 for r=1.5, the Gap I phase consists of two separate
regions, which have the same parity under the twisted

0 0.5 1
0

20

40

j

k

LMF

Gap II
(Haldane)

r=10
QP

FIG. 6. Phase diagram for r=10 using the approximation in Sec.
III C.

0 0.5 1
0

1

2

3
j r=2

LMF

PPF
Gap II
(Haldane)

k

N=18
N=24

QP

FIG. 7. Ground-state phase diagram of �1� for r=2.0. In this and
in the following figures, phase boundaries determined from the nu-
merical diagonalization data for N=18 and 24 are shown. The solid
lines are guide for eye. The broken lines are the results of the
small-j approximation in A.

0 0.5 1
0

1

2

3

Gap II
(Haldane)

Gap
I

Gap I

LMF

PPF

k

j r=1.5
N=18
N=24

QP

FIG. 8. Ground-state phase diagram of �1� for r=1.5.

0 0.5 1
0

1

2

3

Gap I

Gap II
(Haldane)

PPF

LMFGap I

j

k

r=1.3
N=18
N=24

QP

FIG. 9. Ground-state phase diagram of �1� for r=1.3.
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boundary condition. However, these two regions merge with
the decrease in r as shown in Fig. 10 for r=1.2. Therefore we
conclude these two regions belong to a single phase.

For small k, we find the region in which the singlet triplet
excitation gap �E behaves almost critically. Figure 11�a�
shows the j dependence of the scaled gap N�E for r=1.3 and
k=0.12 for N=12, 18 and 24. Although the boundary of such
region cannot be precisely determined, they roughly corre-
spond to the shaded regions in Figs. 8–10. Applying the twist
boundary method,31,32 we calculate the ground-state energies
E+ and E− with spin inversion parities + and −, respectively.
Then we find that the spin inversion parity of the ground
state or the sign of E+−E− changes several times with the
variation of j as shown in Fig. 11�b�. In this region, the
difference E+−E− is extremely small �typically less than
O�10−3� for N=24� and becomes even smaller with the de-
crease in k. This behavior is most prominent for j
1, as
shown in Figs. 9 and 10, unless this regime is covered by the
ferrimagnetic phase as shown in Figs. 7 and 8.

The critical values of j, at which the parity changes, are
shown by the dotted lines in Figs. 8–10 for each system size.
They depend sensitively on the system size. Due to the limi-
tation of the system size, we cannot conclude whether these
lines correspond to some phase transitions in the thermody-
namic limit. However, for large j, these lines are expected to
be continuously connected to the similar lines of the effec-
tive model �18� in the corresponding regime �the shaded re-
gion in Fig. 4�. The numerically estimated values of the cen-
tral charge c of the effective model �18� on these lines
suggest that they are Gaussian transition lines with c=1
among spin gap phases with extremely small gap and large
scale singlet clusters.30 Therefore it is likely that these lines
in the present model are also similar Gaussian transition
lines. However, considering the large ambiguity in the esti-
mation of c in Ref. 30, other possibilities cannot be ruled out.
The elucidation of the nature of the ground state in this re-
gime is left for future studies.

V. PARTIALLY POLARIZED FERRIMAGNETIC PHASE

A. Numerical results

To clarify properties of the PPF phase, we calculated the
spontaneous magnetization M0 of the ground state by the
density-matrix renormalization-group �DMRG� method. In
Fig. 12, we show M0 as a function of j for r=1.3 and k
=0.5 with N=72. For small j, the ground state is in the Gap
I phase with M0=0. When j increases, the LMF phase sets in
where M0=Ms /2. The slight deviation of M0 /Ms from 0.5 in
this phase is due to the boundary effect inevitable for the
open boundary DMRG. With further increase in j, the
ground state enters into the PPF phase where the spontane-
ous magnetization gradually decreases down to zero.

Typical magnetization curve calculated by the DMRG is
presented in Fig. 13 for r=1.5, j=1.7, and k=0.4. The mag-
netization increases continuously from the zero-field value in
the PPF phase in contrast to the LMF phase where the mag-
netization is quantized to the zero-field value up to a finite
critical field.4 This implies that the magnetic excitation is
gapless in the PPF phase as in the previously reported
systems.9,28,29

The local magnetization profile �Sz�p�� calculated by the
DMRG is plotted against p in Fig. 14 for r=1.5, j=1.7, and

0 0.5
0

1

2

3

Gap II
(Haldane)

Gap I
PPF

LMF

QP

N=18
N=24

r=1.2

k

j

FIG. 10. Ground-state phase diagram of �1� for r=1.2.

0 2 4
0

0.2

0.4

j

N∆E r=1.3 k=0.12
periodic boundary

N=12
N=18
N=24

(a)

0 2 4
−0.002

0

0.002

0.004

E+−E−

N=12
N=18

r=1.3 k=0.12
twisted boundary

N=24

j

(b)

FIG. 11. �a� The j dependence of the scaled singlet triplet energy
gap N�E with periodic boundary condition and �b� the energy dif-
ference between the different parity ground states E+−E− with
twisted boundary condition. The parameters are r=1.3, k=0.12, and
N=12, 18, and 24. The triangles indicate the values of j where the
ground-state parity changes under the twisted boundary condition
for N=24.
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k=0.4. In addition to the period two oscillation, an incom-
mensurate modulation is clearly observed in the local mag-
netization.

Similar behaviors are found in other frustration-induced
PPF phases in the spin-1/2 period three chain with next-
nearest-neighbor interaction11 and in the model of Ref. 10.
We expect these features are common aspects of the
frustration-induced quantum PPF phase.

B. Classical picture

To understand the physical picture of the PPF phase, we
consider the classical limit of the Hamiltonian �1�. Since the
J2 bonds are not frustrated, the relative angles between the
spins S1�p�, S2�p�, and T�p�, which form a triangle, are not
affected by j in the absence of magnetic field. The ground
state of the whole chain can be constructed by arranging the
triangles so that S1�p� and S2�p−1� are antiparallel. The clas-
sical ground-state energy EG

� of a three-spin cluster consist-
ing of the spins S1�p�, S2�p�, and T�p� is given by

EG
��
,�,�� =

k

2
cos�
 − �� +

kr

2
cos�
 − �� +

1

2
cos�� − �� ,

�33�

assuming a planar configuration. We confine ourselves to the
planar configuration because nonplanar configurations have

higher energy. The angles �, 
, and � denote the polar angle
of S1�p�, T�p�, and S2�p� measured from z axis as shown in
Fig. 15, respectively. By minimizing EG

�, we find that a
stable noncollinear configuration within the triangle is real-
ized in the region,

� r − 1

r
� � k �

r + 1

r
, �34�

which is indicated as PPF in Fig. 16. Outside this region,
three different collinear configurations are flavored depend-
ing on the values of k and r as

�S1
z�p�Tz�p�S2

z�p�� =�
�⇑↓↑� k �

r + 1

r
,

�⇑↑↓� 0 � k �
r − 1

r
,

�⇑↓↓� 0 � k �
1 − r

r
.
� �35�

If these are regularly arranged along the chain keeping, the
spins S1�p� and S2�p−1� antiparallel, the LMF phase, and
two kinds of Néel phases are realized as indicated in Fig. 16.

In the region �34�, however, the energy is invariant under
the simultaneous rotation of two of the spins �say S2�p� and
T�p�� around the remaining one �say S1�p��. Therefore the
ground state of the whole chain has a macroscopic degen-
eracy. Among these highly degenerate ground states, the
states with various values of magnetization are included. For
example, the state depicted in Fig. 17�a� has finite magneti-

0 1
0

0.2

0.4

M0/Ms

j

r=1.3 k=0.5 N=72

FIG. 12. The j dependence of the spontaneous magnetization for
k=0.5 and r=1.3. The results are calculated in the N=72 system by
the DMRG method. The magnetization is normalized by the satu-
rated magnetization Ms�2N /3.

0 2 4
0

0.5

1
M/Ms

H

j=1.7 k=0.4 r=1.5
N=192

0 0.05 0.1
0

0.2

0.4
M/Ms

H

FIG. 13. Magnetization curve in the PPF phase with k=0.4, j
=1.7, and r=1.5 for N=192 calculated by the DMRG method.

0 100
−0.5

0

0.5

1

S1

S2

T

r=1.5 j=1.7 k=0.4<Sz(p)>

N=192

p

FIG. 14. Local magnetization profile in PPF phase with k=0.4,
j=1.7, and r=1.5 for N=192 calculated by the DMRG method.
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θ

FIG. 15. Classical planar spin configuration in a triangle.
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zation, while the other one depicted in Fig. 17�b� has a spiral
structure and has no net magnetization.

In the presence of magnetic field, the degeneracy is lifted
and one of the ground states, which has the largest magneti-
zation, is selected by an infinitesimal magnetic field. In this
state, the spin configuration should be restricted in a single
plane because the tilt out of the plane reduces the net mag-
netization. Then each triangle in the spin chain takes one of
twofold degenerate spin configurations with clockwise and
counterclockwise spin rotations. These two configurations
are distinguished by chirality. In a uniform array of triangles
with the same chirality, the net magnetization tends to be
averaged out. Therefore, the magnetization per triangle de-
creases with increasing length of the array. To maximize the
magnetization, an array of the triangles with alternating
chirality depicted in Fig. 17�a� is most favorable. This also
explains the period two oscillation observed in Fig. 14. With
the increase in the magnetic field, the spin orientation gradu-
ally changes to the direction of the magnetic field.

The ground state in a finite magnetic field H is obtained
by numerically minimizing the classical energy,

EG�H� = �
p=1

N/3 � k

2
cos�
�p� − ��p�� +

kr

2
cos�
�p� − ��p���

�36�

+
1

2
cos���p� − ��p�� +

j

2
cos���p − 1� − ��p�� �37�

�− H�cos ��p� +
1

2
cos 
�p� +

1

2
cos ��p��� �38�

where the magnetic field is in z direction. Considering the
argument in the preceding paragraph, we assume a period
two structure in the minimization procedure. Typical magne-
tization curves are shown in Fig. 18 for r=1.5 and j=1.7
with k=0.2, 1.0 and 2.0. At first sight, these three curves
correspond to the LMF phase �k=0.2�, the PPF phase �k
=1.0�, and a nonmagnetic phase �k=2.0�. However, the clas-
sical phase—including the point of k=2.0—correspond to a
Néel ordered state �S1

z�1�Tz�1�S2
z�1�S1

z�2�Tz�2�S2
z�2�¯�

= �⇑↓ ↑ ⇓ ↑ ↓¯� as discussed above. Nevertheless, we may
regard this Néel phase as a classical counterpart of the Gap II
�Haldane� phase since the short-range antiferromagnetic cor-
relation between the total spins of the three-spin clusters is
common in the Néel state and in the Haldane-like state, and
the latter is more stable in the quantum case. Similarly, in the
classical PPF ground state has noncollinear spin structure
with broken U�1� symmetry around the z axis, while in the
quantum case, the U�1� symmetry is restored due to quantum
fluctuation. It should be also noted that another ordered
ground state with structure �⇑↓ ↓ ⇑ ↓ ↓ . . .� corresponding to
the classical counterpart of the three-spin singlet phase ap-
pears for small r as shown in Fig. 16.

Thus, all the phases in the quantum model �1� have the
classical counterparts except for the QP phase, which is of
essentially quantum origin. Therefore the classical picture
appears to be satisfactory at least qualitatively. The param-
eter regime for each phase is, however, largely different from
that of the original quantum model �1�. For example, the
condition for the classical noncollinear spin configuration
�34� is independent of j and does not cover the numerically
obtained region of the PPF phase. In addition, the incom-
mensurate modulation of the spin profile is not explained in
the classical model. These features are essentially quantum
effect, which is beyond the classical interpretation.

0 1 2
0

2

4

PPF

LMFr

k

FIG. 16. Classical phase diagram on the k-r plane.
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T(3)

S2(3)

T(2)
(a)

S1(1)
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S2(1) S1(2) S2(2) S1(3)

T(3)

S2(3)

T(2)
(b)

FIG. 17. Examples of classical ground-state configurations �a�
with finite and �b� vanishing magnetizations. The inner arrows in-
dicate the direction of the rotation of spins along each triangle.
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FIG. 18. Classical magnetization curves for k=0.2, 1.0 and 2.0
with j=1.7 and r=1.5.
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VI. SUMMARY AND DISCUSSION

A mixed spin chain with frustrated side chains is investi-
gated when the frustration is strong. Not only the LMF phase
but also the PPF phase appears between the nonmagnetic and
the LMF phases. The PPF phase has continuously varying
spontaneous magnetization, which is not a simple fraction of
the saturated magnetization. The local magnetization profile
has an incommensurate structure in the PPF phase. These
features are common with other examples of PPF phases
induced by frustration. Classical interpretation of the PPF
phase is also presented. It is pointed out that an infinitesimal
magnetic field selects the PPF state in an appropriate param-
eter region. For the quantum model, however, the PPF state
is realized in the absence of magnetic field. This suggests
that quantum fluctuation selects one of the classical ground
states.

The presence of QP phase is demonstrated by the pertur-
bational calculation, as well as the numerical method. Al-
though the present perturbational calculation is carried out
for our specific �1�, the derivation of the effective spin-1
bilinear-biquadratic chain is quite general and is applicable
to models that have an effective spin-1 degree of freedom in
each unit cell. The QP phase appears around the point where
the first-order effective coupling vanishes due to frustration.
Hence the QP phase is expected to be commonly found in a
wide variety of frustrated quantum spin chains.

For r�1, j
1, and k
1, the main chain couples only
weakly with side spins but the frustration is strong. In this
case, there appears an almost critical nonmagnetic ground
state in which the spin inversion parity under the twisted
boundary condition changes many times with the variation of
parameters. Considering the continuity to the similar ground
state in the effective model for large j, it is likely that a series
of Gaussian transitions take place among gapped phases with
an extremely small gap.

Although the nature of this almost critical ground state
remains unresolved, we may speculate its physical origin in
the following way: In the absence of side spins T�p�, the
ground state of the main chain is ferrimagnetically ordered.
For small k, side spins are coupled to this ferrimagnetic mo-
ment antiferromagnetically via K1 bond and ferromagneti-
cally via K2 bonds. For r
1, the effective coupling is even
weakened due to frustration, and for j=1, the ferrimagnetic
state of the main chain has no local valence-bond structure.
Therefore the effective coupling among the side spins, which
is mediated by the fluctuation in the main chain, would be
very long ranged for j
1. This implies that the resultant
nonmagnetic state should have a highly nonlocal character.
Thus we may speculate that the ground state has an ex-
tremely small energy gap and large scale singlet clusters. A
similar ground state with extremely small gap is known in a
S=1 /2 zigzag chain with ferromagnetic nearest-neighbor
and antiferromagnetic next-nearest-neighbor interactions.24

However we do not find an explicit mapping of the present
model onto the field theory of Ref. 24.
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